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Note 

Analytical and Numerical Aspects of Certain 
Nonlinear Evolution Equations 

IV. Numerical, Modified Korteweg-de Vries Equation 

1. INTRODUCTION 

The modified Korteweg-de Vries (MKdV) equation describes a wide class of 
physical phenomena (e.g., acoustic waves in certain anharmonic lattices [I] and 
Alfen waves in a collisionless plasma [2]). 

In 1984 we derived nonlinear partial difference equations which have as limiting 
forms the Kortewegde Vries (KdV) and the MKdV equations [3]. These dif- 
ference equations have a number of special properties [4] and are constructed by 
methods related to the inverse scattering transform @ST). We have also implemen- 
ted similar schemes for the nonlinear Schrodinger (NLS) (Ablowitz-Ladik) and the 
KdV equations and compared them with known numerical schemes [S, 61. 
Experiments have shown that the IST schemes for the NLS and KdV equations 
compare very favorably with the other known numerical methods. This work aims 
to implement and compare the proposed schemes which were developed in [3] 
with certain other known numerical methods for the MKdV equation 

u, + 6u2 u, + u,,, = 0. (1.1) 

The MKdV, KdV, and NLS equations are essentially classical in the literature in 
nonlinear phenomena. 

The following numerical methods are applied to the MKdV equation: (i) a 
proposed global scheme, (ii) a proposed local scheme, (iii) an implicit scheme, 
(iv) a split step Fourier method (Tappert), and (v) a pseudospectral method 
(Fornberg and Whitham). 

Our approach for comparison is: (a) fix the accuracy (L,) for computations 
beginning at t = 0 and ending at t = T; (b) leave other parameters free (e.g., At, or 
Ax), and compare the computing time required to attain such accuracy for various 
choices of the parameters. 

To obtain the optimal computing time for each scheme, the following procedure 
was used: Let T,(AX) = the computing time involved when the problem was 
solved by method M using a spatial step of Ax, with At chosen to be the largest At 
which makes the L, < To1 (if no such At exists then T( Ax) = CD) and choose 
TM = min,, [ T,(Ax)] as the optimal computing time for method M. 
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The above methods are applied to the MKdV equation (1.1) subject to the 
conditions : 

(a) The initial conditions. (i) 1-soliton solution. The exact solution of (1.1) 
on the infinite interval is 

where r10 = constant. 

u(x, t) = k sech(kx - k3t + qo), (1.2) 

For initial conditions, Eq. (1.2) is used at t = 0, and different values of k are 
tested and q0 is chosen to be zero. 

(ii) Collisions of two solitons. The exact solution of (1.1) on the infinite 
interval is 

45 t) = a%(f*/f)),, (1.3) 

where * denotes a complex conjugate, 

and 

For initial conditions, Eq. (1.3) is used at t = 0, and three different sets of values 
of the parameters are studied, namely, 

k, = 0.5, k2 = 1.0, 

k, = 0.5, k2 = 2.0, 

k, = -0.5, k, = 1.0, 

q{“’ = 1.1, q$O’ = 3.33; 

rj ‘p’ = 0.625, r/$0’ = 8.75; 

rj\“‘= -1.1, q-$0’ = 1.0. 

The solitons are allowed to interact and return to their original shapes. 
(b) The boundary conditions. Periodic boundary conditions on the interval 

[ -20,201 are imposed. The numerical solution is compared to the exact solution. 
In addition two of the conserved quantities are computed; namely; 5 u2 dx, and 
J [u” - (u,)‘] dx. 

Recently strong numerical schemes have been proposed for solving nonlinear 
evolution equations, including a scheme using finite element techniques introduced 
by Bona, Dougalis, and Karakashian [ 121, and an adaptive numerical scheme 
introduced by Sanz-Serna [ 133. In the future it would be useful to compare our 
schemes to these newer ones as well as consider initial conditions more general than 
those yielding interacting solitary waves. 
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2. REPRESENTATION OF THE MKDV EQUATION USING NUMERICAL METHODS 

(i) The proposed global scheme which is based on the IST is (Taha and 
Ablowitz, [3]) 

AmR::=R~+zA(4)-R~=:y,+,D(4)+R~+1S,+,-R~~llP, 

-CR~~+:A”1-R~~,y,-,D(4’+R~_+~S,-2-R~~,P,_1] 

where 

+R; (2.1) 

A(2) = - $A@, + fa, - D(2)= - ;A@, _ ia, - - 

A(4) = LA(o) _ 1, 
4 9 D(4) = ;A"" + aa, - - 

At 
a=o3’. - A(O) = arbitrary constant, 

R=Axu, InI < p (half the length of the interval of interest), m > 0. 

This scheme is implemented with the value of A”’ = $a. This proposed scheme is 
unconditionally stable, and has a truncation error of order 0((At)2) + ~((Ax)~). 
This scheme is implemented using the sweeping/iteration technique presented by the 
authors [S, 61. 
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(ii) The proposed local scheme which is derived from Eq. (2.1) with A ‘0) = $a 
is 

un 
m+I-Ut?l 

n u;“,l- 3u; + I + 3u;;,’ - 24;;; u;- 2 - 3u;_, + 3u; - u;+ , 
At = am 

+ 
am 

1 
2Ax [ 

u~~:{(u~+~)2+(U::)2}-U~-*{(U~t~)2+(U::+’)2} 

U 
IT+1 

+~[u~u~+,+u::+‘u~~,‘+2u::~,u~] 

(2.2) 

This scheme is unconditionally stable according to linear analysis, and has a 
truncation error of order 0( (At)2) + O((AX)~). This scheme is implemented using 
the sweeping/iteration technique. 

(iii) An implicit scheme [7]: 

p+l-p n n u~~,‘-3u::+‘+3u~=:-u~~: u~-2-3u~_l+3u~-u~+, 
At = 2( Ax)~ 

+ 
2( Ax)~ 

-& {ec(u3)~:~ - (u3K’,’ + (u3K+, - (u3K 11 

+3(1-e)[(u2)::+‘(u~~,‘-u~_+:)+(u2)::(u~+,-u~~:_,)]}. (2.3) 

This scheme is unconditionally stable according to linear analysis and has a trun- 
cation error of order 0( (At)2) + 0( (Ax)‘). This scheme is implemented using the 
sweeping/iteration technique. Several values of 0 were employed and experimentally 
we found that 8 = 3 gave the best results. 

(iv) Split step Fourier method (Tappert [8]). For convenience the spatial 
period was normalized to [0,2rr], then Eq. (1.1) becomes 

3 

u,+6%2u,+L+*x=o, 

P P3 
(2.4) 

where p is half the length of the interval of interest, and X= (x + p) n/p. 
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To implement this method for the MKdV equation (2.4), as the first step, one 
first approximates, 

u,+~%~~u~=O. 
P 

(2.5) 

Equation (2.5) can be approximated by using an implicit scheme such as 

p+1=p 
n n -&$j { cs(ii’);:,’ - 8(223);‘, - (ii3);:; + (ii3)yq 

+ C8b3):+ 1 - 8(u3)~-1-(u3)~+2+(u3)nm~21), (2.6) 

where ii is a solution of Eq. (2.5) and u is the solution of Eq. (2.4). For the second 
step, one approximates 

(2.7) 

by means of the discrete Fourier transform such as 

U(Xj, t + At) = F-‘(e(‘k3n3’p3)d’F(t(Xj, t))), (2.8) 

where F denotes discrete Fourier transform and F-’ its inverse. This scheme is 
unconditionally stable according to linear analysis, and has a truncation error of 
order O((dt)2) + O((dX)4). 

(vi) Pseudospectral method by Fornberg and Whitham [9]. The pseudo- 
spectral method for Eq. (2.4) is 

u(X, t + At) - u(X, t-At) + 2iF At u’(X, t) F-‘(kF(u)) 

-2iF-’ {sin (FAl) F(u))=O. 

The linear stability requirement for this scheme is Az/(Ax)~ < 3/2n2. 

(2.9) 

3. CONCLUSIONS 

According to our numerical experiments we have made the following conclusions 
(see Tables I and II as examples): 

(1) The proposed global scheme, based on IST, proved to be faster than all 
of the methods we considered. It is worth noting that this proposed global scheme 
behaves much better than the other utilized schemes either when better accuracy is 
required or for large amplitudes. This result is similar to that for the NLS equation 
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[S] and it suggests that eventually a similar conclusion will be drawn from the 
implementation of the KdV schemes. 

(2) The pseudospectral method becomes competitive with the IST global 
scheme when both high accuracy and large amplitudes are involved. 

(3) The implicit scheme behaves better than the proposed local scheme and 
the pseudospectral method for low amplitudes, and it is much better than the split 
step (Tappert) method. 

(4) The proposed local scheme behaves better than the pseudospectral 
method for small amplitudes for the I-soliton case and becomes competitive with 
the implicit scheme for large amplitudes. 

(5) The split step Fourier method behaves much slower than all of the 
methods we considered. 

We note that since the proposed local scheme did not perform as well as its 
global version, it will be under further investigation. All the numerical calculations 
were inspected at every step by using the conserved quantities j u* dx, and 
f (u” - (u,)*) dx (Table I-II). The two conserved quantities are calculated by means 
of Simpson’s rule. In the finite difference schemes we have discretized U, using a 
central difference approximation. For the Fourier based schemes the discrete 
Fourier transform was used to estimate U, in the computation of the conserved 
quantity J (u” - (u,)*) dx. The proposed global scheme is the only utilized scheme 
which has an infinite number of conserved quantities, and true soliton solutions. It 
is worth mentioning that these IST schemes can also be used in combination with 
other numerical schemes to study a wider class of physically important nonlinear 
evolution equations. For example, they can be used to study perturbed forms of the 
KdV, MKdV, and NLS equations [ 111. 
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